How Hdfa Differs With Nfs?
Following are differences between HDFS and NAS
In HDFS Data Blocks are distributed across local drives of all machines in a cluster. Whereas in NAS data is stored on dedicated hardware.
HDFS is designed to work with MapReduce System, since computation is moved to data. NAS is not suitable for MapReduce since data is stored separately from the computations.
HDFS runs on a cluster of machines and provides redundancy using replication protocol. Whereas NAS is provided by a single machine therefore does not provide data redundancy.
How Does A Namenode Handle The Failure Of The Data Nodes?
HDFS has master/slave architecture. An HDFS cluster consists of a single
NameNode, a master server that manages the file system namespace and regulates access to files by clients.
In addition, there are a number of DataNodes, usually one per node in the cluster, which manage storage attached to the nodes that they run on. The NameNode and DataNode are pieces of software designed to run on commodity machines.
NameNode periodically receives a Heartbeat and a Block report from each of the DataNodes in the cluster. Receipt of a Heartbeat implies that the DataNode is functioning properly. A Blockreport contains a list of all blocks on a DataNode. When NameNode notices that it has not received a heartbeat message from a data node after a certain amount of time, the data node is marked as dead. Since blocks will be under replicated the system begins replicating the blocks that were stored on the dead DataNode. The NameNode Orchestrates the replication of data blocks from one DataNode to another. The replication data transfer happens directly between DataNode and the data never passes through the NameNode.
What Is The Meaning Of Speculative Execution In Hadoop? Why Is It Important?
Speculative execution is a way of coping with individual Machine performance. In large clusters where hundreds or thousands of machines are involved there may be machines which are not performing as fast as others.
This may result in delays in a full job due to only one machine not performaing well. To avoid this, speculative execution in hadoop can run multiple copies of same map or reduce task on different slave nodes. The results from first node to finish are used.
When The Reducers Are Are Started In A Mapreduce Job?
In a MapReduce job reducers do not start executing the reduce method until the all Map jobs have completed. Reducers start copying intermediate key-value pairs from the mappers as soon as they are available. The programmer defined reduce method is called only after all the mappers have finished.
If reducers do not start before all mappers finish then why does the progress on MapReduce job shows something like Map(50%) Reduce(10%)? Why reducers progress percentage is displayed when mapper is not finished yet?
Reducers start copying intermediate key-value pairs from the mappers as soon as they are available. The progress calculation also takes in account the processing of data transfer which is done by reduce process, therefore the reduce progress starts showing up as soon as any intermediate key-value pair for a mapper is available to be transferred to reducer.
Though the reducer progress is updated still the programmer defined reduce method is called only after all the mappers have finished.
How The Hdfs Blocks Are Replicated?
HDFS is designed to reliably store very large files across machines in a large cluster. It stores each file as a sequence of blocks; all blocks in a file except the last block are the same size. The blocks of a file are replicated for fault tolerance. The block size and replication factor are configurable per file. An application can specify the number of replicas of a file. The replication factor can be specified at file creation time and can be changed later. Files in HDFS are write-once and have strictly one writer at any time.
The NameNode makes all decisions regarding replication of blocks. HDFS uses rack-aware replica placement policy. In default configuration there are total 3 copies of a datablock on HDFS, 2 copies are stored on datanodes on same rack and 3rd copy on a different rack.
What Is Hadoop Framework?
Hadoop is a open source framework which is written in java by apche software foundation. This framework is used to wirite software application which requires to process vast amount of data (It could handle multi tera bytes of data). It works in-paralle on large clusters which could have 1000 of computers (Nodes) on the clusters. It also process data very reliably and fault-tolerant manner.
What Are Some Of The Characteristics Of Hadoop Framework?
Hadoop framework is written in Java. It is designed to solve problems that involve analyzing large data (e.g. petabytes). The programming model is based on Google’s MapReduce. The infrastructure is based on Google’s Big Data and Distributed File System. Hadoop handles large files/data throughput and supports data intensive distributed applications. Hadoop is scalable as more nodes can be easily added to it.
Give A Brief Overview Of Hadoop History?
In 2002, Doug Cutting created an open source, web crawler project.
In 2004, Google published MapReduce, GFS papers.
In 2006, Doug Cutting developed the open source, Mapreduce and HDFS project.
In 2008, Yahoo ran 4,000 node Hadoop cluster and Hadoop won terabyte sort benchmark.
In 2009, Facebook launched SQL support for Hadoop.
Give Examples Of Some Companies That Are Using Hadoop Structure?
A lot of companies are using the Hadoop structure such as Cloudera, EMC, MapR, Hortonworks, Amazon, Facebook, eBay, Twitter, Google and so on.
Replication Causes Data Redundancy Then Why Is Is Pursued In Hdfs?
HDFS works with commodity hardware (systems with average configurations) that has high chances of getting crashed any time. Thus, to make the entire system highly fault-tolerant, HDFS replicates and stores data in different places. Any data on HDFS gets stored at at least 3 different locations. So, even if one of them is corrupted and the other is unavailable for some time for any reason, then data can be accessed from the third one. Hence, there is no chance of losing the data. This replication factor helps us to attain the feature of Hadoop called Fault Tolerant.
Since The Data Is Replicated Thrice In Hdfs, Does It Mean That Any Calculation Done On One Node Will Also Be Replicated On The Other Two?
Since there are 3 nodes, when we send the MapReduce programs, calculations will be done only on the original data. The master node will know which node exactly has that particular data. In case, if one of the nodes is not responding, it is assumed to be failed. Only then, the required calculation will be done on the second replica.
What Is A Job Tracker?
Job tracker is a daemon that runs on a namenode for submitting and tracking MapReduce jobs in Hadoop. It assigns the tasks to the different task tracker. In a Hadoop cluster, there will be only one job tracker but many task trackers. It is the single point of failure for Hadoop and MapReduce Service. If the job tracker goes down all the running jobs are halted. It receives heartbeat from task tracker based on which Job tracker decides whether the assigned task is completed or not.
What Is A Task Tracker?
Task tracker is also a daemon that runs on datanodes. Task Trackers manage the execution of individual tasks on slave node. When a client submits a job, the job tracker will initialize the job and divide the work and assign them to different task trackers to perform MapReduce tasks. While performing this action, the task tracker will be simultaneously communicating with job tracker by sending heartbeat. If the job tracker does not receive heartbeat from task tracker within specified time, then it will assume that task tracker has crashed and assign that task to another task tracker in the cluster.
Is Namenode Machine Same As Datanode Machine As In Terms Of Hardware?
It depends upon the cluster you are trying to create. The Hadoop VM can be there on the same machine or on another machine. For instance, in a single node cluster, there is only one machine, whereas in the development or in a testing environment, Namenode and data nodes are on different machines.
What Is A Heartbeat In Hdfs?
A heartbeat is a signal indicating that it is alive. A datanode sends heartbeat to Namenode and task tracker will send its heart beat to job tracker. If the Namenode or job tracker does not receive heart beat then they will decide that there is some problem in datanode or task tracker is unable to perform the assigned task.
Can You Give A Detailed Overview About The Big Data Being Generated By Facebook?
As of December 31, 2012, there are 1.06 billion monthly active users on facebook and 680 million mobile users. On an average, 3.2 billion likes and comments are posted every day on Facebook. 72% of web audience is on Facebook. And why not! There are so many activities going on facebook from wall posts, sharing images, videos, writing comments and liking posts, etc. In fact, Facebook started using Hadoop in mid-2009 and was one of the initial users of Hadoop.
What Is Hdfs ? How It Is Different From Traditional File Systems?
HDFS, the Hadoop Distributed File System, is responsible for storing huge data on the cluster. This is a distributed file system designed to run on commodity hardware.
It has many similarities with existing distributed file systems. However, the differences from other distributed file systems are significant.
HDFS is highly fault-tolerant and is designed to be deployed on low-cost hardware.
HDFS provides high throughput access to application data and is suitable for applications that have large data sets.
HDFS is designed to support very large files. Applications that are compatible with HDFS are those that deal with large data sets. These applications write their data only once but they read it one or more times and require these reads to be satisfied at streaming speeds. HDFS supports write-once-read-many semantics on files.
What Is Hdfs Block Size? How Is It Different From Traditional File System Block Size?
In HDFS data is split into blocks and distributed across multiple nodes in the cluster. Each block is typically 64Mb or 128Mb in size. Each block is replicated multiple times. Default is to replicate each block three times. Replicas are stored on different nodes. HDFS utilizes the local file system to store each HDFS block as a separate file. HDFS Block size can not be compared with the traditional file system block size.
What Is A Namenode? How Many Instances Of Namenode Run On A Hadoop Cluster?
The NameNode is the centerpiece of an HDFS file system. It keeps the directory tree of all files in the file system, and tracks where across the cluster the file data is kept. It does not store the data of these files itself.
There is only One NameNode process run on any hadoop cluster. NameNode runs on its own JVM process. In a typical production cluster its run on a separate machine.
The NameNode is a Single Point of Failure for the HDFS Cluster. When the NameNode goes down, the file system goes offline.
Client applications talk to the NameNode whenever they wish to locate a file, or when they want to add /copy /move /delete a file. The NameNode responds the successful requests by returning a list of relevant DataNode servers where the data lives.
Following are differences between HDFS and NAS
In HDFS Data Blocks are distributed across local drives of all machines in a cluster. Whereas in NAS data is stored on dedicated hardware.
HDFS is designed to work with MapReduce System, since computation is moved to data. NAS is not suitable for MapReduce since data is stored separately from the computations.
HDFS runs on a cluster of machines and provides redundancy using replication protocol. Whereas NAS is provided by a single machine therefore does not provide data redundancy.
How Does A Namenode Handle The Failure Of The Data Nodes?
HDFS has master/slave architecture. An HDFS cluster consists of a single
NameNode, a master server that manages the file system namespace and regulates access to files by clients.
In addition, there are a number of DataNodes, usually one per node in the cluster, which manage storage attached to the nodes that they run on. The NameNode and DataNode are pieces of software designed to run on commodity machines.
NameNode periodically receives a Heartbeat and a Block report from each of the DataNodes in the cluster. Receipt of a Heartbeat implies that the DataNode is functioning properly. A Blockreport contains a list of all blocks on a DataNode. When NameNode notices that it has not received a heartbeat message from a data node after a certain amount of time, the data node is marked as dead. Since blocks will be under replicated the system begins replicating the blocks that were stored on the dead DataNode. The NameNode Orchestrates the replication of data blocks from one DataNode to another. The replication data transfer happens directly between DataNode and the data never passes through the NameNode.
Speculative execution is a way of coping with individual Machine performance. In large clusters where hundreds or thousands of machines are involved there may be machines which are not performing as fast as others.
This may result in delays in a full job due to only one machine not performaing well. To avoid this, speculative execution in hadoop can run multiple copies of same map or reduce task on different slave nodes. The results from first node to finish are used.
Huawei Most Frequently Asked Latest Hadoop Interview Questions Answers |
When The Reducers Are Are Started In A Mapreduce Job?
In a MapReduce job reducers do not start executing the reduce method until the all Map jobs have completed. Reducers start copying intermediate key-value pairs from the mappers as soon as they are available. The programmer defined reduce method is called only after all the mappers have finished.
If reducers do not start before all mappers finish then why does the progress on MapReduce job shows something like Map(50%) Reduce(10%)? Why reducers progress percentage is displayed when mapper is not finished yet?
Reducers start copying intermediate key-value pairs from the mappers as soon as they are available. The progress calculation also takes in account the processing of data transfer which is done by reduce process, therefore the reduce progress starts showing up as soon as any intermediate key-value pair for a mapper is available to be transferred to reducer.
Though the reducer progress is updated still the programmer defined reduce method is called only after all the mappers have finished.
How The Hdfs Blocks Are Replicated?
HDFS is designed to reliably store very large files across machines in a large cluster. It stores each file as a sequence of blocks; all blocks in a file except the last block are the same size. The blocks of a file are replicated for fault tolerance. The block size and replication factor are configurable per file. An application can specify the number of replicas of a file. The replication factor can be specified at file creation time and can be changed later. Files in HDFS are write-once and have strictly one writer at any time.
The NameNode makes all decisions regarding replication of blocks. HDFS uses rack-aware replica placement policy. In default configuration there are total 3 copies of a datablock on HDFS, 2 copies are stored on datanodes on same rack and 3rd copy on a different rack.
What Is Hadoop Framework?
Hadoop is a open source framework which is written in java by apche software foundation. This framework is used to wirite software application which requires to process vast amount of data (It could handle multi tera bytes of data). It works in-paralle on large clusters which could have 1000 of computers (Nodes) on the clusters. It also process data very reliably and fault-tolerant manner.
What Are Some Of The Characteristics Of Hadoop Framework?
Hadoop framework is written in Java. It is designed to solve problems that involve analyzing large data (e.g. petabytes). The programming model is based on Google’s MapReduce. The infrastructure is based on Google’s Big Data and Distributed File System. Hadoop handles large files/data throughput and supports data intensive distributed applications. Hadoop is scalable as more nodes can be easily added to it.
Give A Brief Overview Of Hadoop History?
In 2002, Doug Cutting created an open source, web crawler project.
In 2004, Google published MapReduce, GFS papers.
In 2006, Doug Cutting developed the open source, Mapreduce and HDFS project.
In 2008, Yahoo ran 4,000 node Hadoop cluster and Hadoop won terabyte sort benchmark.
In 2009, Facebook launched SQL support for Hadoop.
Give Examples Of Some Companies That Are Using Hadoop Structure?
A lot of companies are using the Hadoop structure such as Cloudera, EMC, MapR, Hortonworks, Amazon, Facebook, eBay, Twitter, Google and so on.
HDFS works with commodity hardware (systems with average configurations) that has high chances of getting crashed any time. Thus, to make the entire system highly fault-tolerant, HDFS replicates and stores data in different places. Any data on HDFS gets stored at at least 3 different locations. So, even if one of them is corrupted and the other is unavailable for some time for any reason, then data can be accessed from the third one. Hence, there is no chance of losing the data. This replication factor helps us to attain the feature of Hadoop called Fault Tolerant.
Since The Data Is Replicated Thrice In Hdfs, Does It Mean That Any Calculation Done On One Node Will Also Be Replicated On The Other Two?
Since there are 3 nodes, when we send the MapReduce programs, calculations will be done only on the original data. The master node will know which node exactly has that particular data. In case, if one of the nodes is not responding, it is assumed to be failed. Only then, the required calculation will be done on the second replica.
What Is A Job Tracker?
Job tracker is a daemon that runs on a namenode for submitting and tracking MapReduce jobs in Hadoop. It assigns the tasks to the different task tracker. In a Hadoop cluster, there will be only one job tracker but many task trackers. It is the single point of failure for Hadoop and MapReduce Service. If the job tracker goes down all the running jobs are halted. It receives heartbeat from task tracker based on which Job tracker decides whether the assigned task is completed or not.
What Is A Task Tracker?
Task tracker is also a daemon that runs on datanodes. Task Trackers manage the execution of individual tasks on slave node. When a client submits a job, the job tracker will initialize the job and divide the work and assign them to different task trackers to perform MapReduce tasks. While performing this action, the task tracker will be simultaneously communicating with job tracker by sending heartbeat. If the job tracker does not receive heartbeat from task tracker within specified time, then it will assume that task tracker has crashed and assign that task to another task tracker in the cluster.
Is Namenode Machine Same As Datanode Machine As In Terms Of Hardware?
It depends upon the cluster you are trying to create. The Hadoop VM can be there on the same machine or on another machine. For instance, in a single node cluster, there is only one machine, whereas in the development or in a testing environment, Namenode and data nodes are on different machines.
What Is A Heartbeat In Hdfs?
A heartbeat is a signal indicating that it is alive. A datanode sends heartbeat to Namenode and task tracker will send its heart beat to job tracker. If the Namenode or job tracker does not receive heart beat then they will decide that there is some problem in datanode or task tracker is unable to perform the assigned task.
As of December 31, 2012, there are 1.06 billion monthly active users on facebook and 680 million mobile users. On an average, 3.2 billion likes and comments are posted every day on Facebook. 72% of web audience is on Facebook. And why not! There are so many activities going on facebook from wall posts, sharing images, videos, writing comments and liking posts, etc. In fact, Facebook started using Hadoop in mid-2009 and was one of the initial users of Hadoop.
What Is Hdfs ? How It Is Different From Traditional File Systems?
HDFS, the Hadoop Distributed File System, is responsible for storing huge data on the cluster. This is a distributed file system designed to run on commodity hardware.
It has many similarities with existing distributed file systems. However, the differences from other distributed file systems are significant.
HDFS is highly fault-tolerant and is designed to be deployed on low-cost hardware.
HDFS provides high throughput access to application data and is suitable for applications that have large data sets.
HDFS is designed to support very large files. Applications that are compatible with HDFS are those that deal with large data sets. These applications write their data only once but they read it one or more times and require these reads to be satisfied at streaming speeds. HDFS supports write-once-read-many semantics on files.
What Is Hdfs Block Size? How Is It Different From Traditional File System Block Size?
In HDFS data is split into blocks and distributed across multiple nodes in the cluster. Each block is typically 64Mb or 128Mb in size. Each block is replicated multiple times. Default is to replicate each block three times. Replicas are stored on different nodes. HDFS utilizes the local file system to store each HDFS block as a separate file. HDFS Block size can not be compared with the traditional file system block size.
What Is A Namenode? How Many Instances Of Namenode Run On A Hadoop Cluster?
The NameNode is the centerpiece of an HDFS file system. It keeps the directory tree of all files in the file system, and tracks where across the cluster the file data is kept. It does not store the data of these files itself.
There is only One NameNode process run on any hadoop cluster. NameNode runs on its own JVM process. In a typical production cluster its run on a separate machine.
The NameNode is a Single Point of Failure for the HDFS Cluster. When the NameNode goes down, the file system goes offline.
Client applications talk to the NameNode whenever they wish to locate a file, or when they want to add /copy /move /delete a file. The NameNode responds the successful requests by returning a list of relevant DataNode servers where the data lives.
Post a Comment