November 14, 2018

Srikaanth

Adobe Systems Most Frequently Asked Latest C Language Interview Questions Answers

What Does It Mean When A Pointer Is Used In An If Statement?

Any time a pointer is used as a condition, it means “Is this a non-null pointer?” A pointer can be used in an if, while, for, or do/while statement, or in a conditional expression.

Is Null Always Defined As 0?

NULL is defined as either 0 or (void*)0. These values are almost identical; either a literal zero or a void pointer is converted automatically to any kind of pointer, as necessary, whenever a pointer is needed (although the compiler can’t always tell when a pointer is needed).

What Is A Null Pointer?

There are times when it’s necessary to have a pointer that doesn’t point to anything. The macro NULL, defined in , has a value that’s guaranteed to be different from any valid pointer. NULL is a literal zero, possibly cast to void* or char*. Some people, notably C++ programmers, prefer to use 0 rather than NULL. The null pointer is used in three ways

To stop indirection in a recursive data structure
As an error value
As a sentinel value
Adobe Systems Most Frequently Asked Latest C Language Interview Questions Answers
Adobe Systems Most Frequently Asked Latest C Language Interview Questions Answers

Mention The Levels Of Pointers Can You Have?

The

depends on what you mean by “levels of pointers.” If you mean “How many levels of indirection can you have in a single declaration?” the

is “At least 12.”

int i = 0;
int *ip01 = & i;
int **ip02 = & ip01;
int ***ip03 = & ip02;
int ****ip04 = & ip03;
int *****ip05 = & ip04;
int ******ip06 = & ip05;
int *******ip07 = & ip06;
int ********ip08 = & ip07;
int *********ip09 = & ip08;
int **********ip10 = & ip09;
int ***********ip11 = & ip10;
int ************ip12 = & ip11;
************ip12 = 1; /* i = 1 */
The ANSI C standard says all compilers must handle at least 12 levels. Your compiler might support more.

What Is Indirection

If you declare a variable, its name is a direct reference to its value. If you have a pointer to a variable or any other object in memory, you have an indirect reference to its value.

How Do You Print Only Part Of A String?

/* Use printf () to print the first 11 characters of source_str. */

printf (“First 11 characters: ‘%11.11s’n”, source_str);

How To Convert A String To A Number?

The standard C library provides several functions for converting strings to numbers of all formats (integers, longs, floats, and so on) and vice versa.

The following functions can be used to convert strings to numbers
Function Name Purpose

atof():  Converts a string to a double-precision floating-point value.
atoi():  Converts a string to an integer.
atol():  Converts a string to a long integer.

How To Convert A Number To A String?

The standard C library provides several functions for converting numbers of all formats (integers, longs, floats, and so on) to strings and vice versa The following functions can be used to convert integers to strings
Function Name Purpose

iota():    Converts an integer value to a string.
ltoa ():   Converts a long integer value to a string.
ultoa (): Converts an unsigned long integer value to a string.
The following functions can be used to convert floating-point values to strings
Function Name Purpose

ecvt() :   Converts a double-precision floating-point value to a string without an embedded decimal point.
fcvt():      Same as ecvt(), but forces the precision to a specified number of digits.
gcvt():     Converts a double-precision floating-point value to a string with an embedded decimal point.
strtod():   Converts a string to a double-precision floating-point value and reports any “leftover” numbers that could not be converted.
strtol():    Converts a string to a long integer and reports any “leftover” numbers that could not be converted.
strtoul():  Converts a string to an unsigned long integer and reports any “leftover” numbers that could not be converted.

Differentiate Between #include And #include "file"?

When writing your C program, you can include files in two ways. The first way is to surround the file you want to include with the angled brackets < and >. This method of inclusion tells the preprocessor to look for the file in the predefined default location. This predefined default location is often an INCLUDE environment variable that denotes the path to your include files. For instance, given the INCLUDE variable

INCLUDE=C:\COMPILER\INCLUDE;S:\SOURCE\HEADERS;
using the #include version of file inclusion, the compiler first checks the C:\COMPILER\INCLUDE directory for the specified file. If the file is not found there, the compiler then checks the S:\SOURCE\HEADERS directory. If the file is still not found, the preprocessor checks the current directory.

The second way to include files is to surround the file you want to include with double quotation marks. This method of inclusion tells the preprocessor to look for the file in the current directory first, then look for it in the predefined locations you have set up. Using the #include “file” version of file inclusion and applying it to the preceding example, the preprocessor first checks the current directory for the specified file. If the file is not found in the current directory, the C:COMPILERINCLUDE directory is searched. If the file is still not found, the preprocessor checks the S:SOURCEHEADERS directory.

The #include method of file inclusion is often used to include standard headers such as stdio.h or stdlib.h. This is because these headers are rarely (if ever) modified, and they should always be read from your compiler’s standard include file directory.

The #include “file” method of file inclusion is often used to include nonstandard header files that you have created for use in your program. This is because these headers are often modified in the current directory, and you will want the preprocessor to use your newly modified version of the header rather than the older, unmodified version.

Which Is Better To Use A Macro Or A Function?

The

depends on the situation you are writing code for. Macros have the distinct advantage of being more efficient (and faster) than functions, because their corresponding code is inserted directly into your source code at the point where the macro is called. There is no overhead involved in using a macro like there is in placing a call to a function. However, macros are generally small and cannot handle large, complex coding constructs. A function is more suited for this type of situation. Additionally, macros are expanded inline, which means that the code is replicated for each occurrence of a macro. Your code therefore could be somewhat larger when you use macros than if you were to use functions. Thus, the choice between using a macro and using a function is one of deciding between the tradeoff of faster program speed versus smaller program size. Generally, you should use macros to replace small, repeatable code sections, and you should use functions for larger coding tasks that might require several lines of code.

How Are Portions Of A Program Disabled In Demo Versions?

If you are distributing a demo version of your program, the preprocessor can be used to enable or disable portions of your program. The following portion of code shows how this task is accomplished, using the preprocessor directives #if and #endif

int save document(char* doc_name)
{
#if DEMO_VERSION
printf(“Sorry! You can’t save documents using the DEMO
version of this program!n”);
return(0);
#endif

What Is The Easiest Sorting Method To Use?

The

is the standard library function qsort(). It’s the easiest sort by far for several reasons

It is already written.
It is already debugged.
It has been optimized as much as possible (usually).
Void qsort(void *buf, size_t num, size_t size, int (*comp)
(const void *ele1, const void *ele2));

Which Is The Quickest Sorting Method To Use?

The

depends on what you mean by quickest. For most sorting problems, it just doesn’t matter how quick the sort is because it is done infrequently or other operations take significantly more time anyway. Even in cases in which sorting speed is of the essence, there is no one

. It depends on not only the size and nature of the data, but also the likely order. No algorithm is best in all cases.

There are three sorting methods in this author’s “toolbox” that are all very fast and that are useful in different situations. Those methods are quick sort, merge sort, and radix sort.

The Quick Sort :The quick sort algorithm is of the “divide and conquer” type. That means it works by reducing a sorting problem into several easier sorting problems and solving each of them. A “dividing” value is chosen from the input data, and the data is partitioned into three sets: elements that belong before the dividing value, the value itself, and elements that come after the dividing value. The partitioning is performed by exchanging elements that are in the first set but belong in the third with elements that are in the third set but belong in the first Elements that are equal to the dividing element can be put in any of the three sets—the algorithm will still work properly.

The Merge Sort:  The merge sort is a “divide and conquer” sort as well. It works by considering the data to be sorted as a sequence of already-sorted lists (in the worst case, each list is one element long). Adjacent sorted lists are merged into larger sorted lists until there is a single sorted list containing all the elements. The merge sort is good at sorting lists and other data structures that are not in arrays, and it can be used to sort things that don’t fit into memory. It also can be implemented as a stable sort.

The Radix Sort : The radix sort takes a list of integers and puts each element on a smaller list, depending on the value of its least significant byte. Then the small lists are concatenated, and the process is repeated for each more significant byte until the list is sorted. The radix sort is simpler to implement on fixed-length data such as ints.

What Is The Benefit Of Using Const For Declaring Constants?

The benefit of using the const keyword is that the compiler might be able to make optimizations based on the knowledge that the value of the variable will not change. In addition, the compiler will try to ensure that the values won’t be changed inadvertently.

Of course, the same benefits apply to #defined constants. The reason to use const rather than #define to define a constant is that a const variable can be of any type (such as a struct, which can’t be represented by a #defined constant). Also, because a const variable is a real variable, it has an address that can be used, if needed, and it resides in only one place in memory.

Is It Acceptable To Declare/define A Variable In A C Header?

A global variable that must be accessed from more than one file can and should be declared in a header file. In addition, such a variable must be defined in one source file.

Variables should not be defined in header files, because the header file can be included in multiple source files, which would cause multiple definitions of the variable. The ANSI C standard will allow multiple external definitions, provided that there is only one initialization. But because there’s really no advantage to using this feature, it’s probably best to avoid it and maintain a higher level of portability.

“Global” variables that do not have to be accessed from more than one file should be declared static and should not appear in a header file.

When Should A Type Cast Be Used?

There are two situations in which to use a type cast. The first use is to change the type of an operand to an arithmetic operation so that the operation will be performed properly.

The second case is to cast pointer types to and from void * in order to interface with functions that expect or return void pointers. For example, the following line type casts the return value of the call to malloc() to be a pointer to a foo structure.

struct foo *p = (struct foo *) malloc(sizeof(struct foo));

Give The Benefit Of Using #define To Declare A Constant?

Using the #define method of declaring a constant enables you to declare a constant in one place and use it throughout your program. This helps make your programs more maintainable, because you need to maintain only the #define statement and not several instances of individual constants throughout your program. For instance, if your program used the value of pi (approximately 3.14159) several times, you might want to declare a constant for pi as follows

#define PI 3.14159
Using the #define method of declaring a constant is probably the most familiar way of declaring constants to traditional C programmers. Besides being the most common method of declaring constants, it also takes up the least memory. Constants defined in this manner are simply placed directly into your source code, with no variable space allocated in memory. Unfortunately, this is one reason why most debuggers cannot inspect constants created using the #define method.

How To Avoid Including A Header More Than Once?

One easy technique to avoid multiple inclusions of the same header is to use the #ifndef and #define preprocessor directives. When you create a header for your program, you can #define a symbolic name that is unique to that header. You can use the conditional preprocessor directive named #ifndef to check whether that symbolic name has already been assigned. If it is assigned, you should not include the header, because it has already been preprocessed. If it is not defined, you should define it to avoid any further inclusions of the header. The following header illustrates this technique

#ifndef _FILENAME_H
#define _FILENAME_H
#define VER_NUM “1.00.00”
#define REL_DATE “08/01/94”
#if _ _WINDOWS_ _
#define OS_VER “WINDOWS”
#else
#define OS_VER “DOS”
#endif
#endif
When the preprocessor encounters this header, it first checks to see whether _FILENAME_H has been defined. If it hasn’t been defined, the header has not been included yet, and the _FILENAME_H symbolic name is defined. Then, the rest of the header is parsed until the last #endif is encountered, signaling the end of the conditional #ifndef _FILENAME_H statement. Substitute the actual name of the header file for “FILENAME” in the preceding example to make it applicable for your programs.

Differentiate Between Arrays And Pointers?

Pointers are used to manipulate data using the address. Pointers use * operator to access the data pointed to by them Arrays use subscripted variables to access and manipulate data. Array variables can be equivalently written using pointer expression.

Subscribe to get more Posts :