Tech Mahindra JavaScript Interview Questions Answers

How Ajax objects can be created?

Following syntax can be used to create Ajax objects:

Var sample = New ajaxObject(‘path of the page’)

What are all the different data types that JSON supports?

JSON supports following data types:

String
Number
Boolean
Array
Object
Null
Tech Mahindra JavaScript Most Frequently Asked Latest Interview Questions Answers
Tech Mahindra JavaScript Most Frequently Asked Latest Interview Questions Answers

What are the goals of Ajax?

The basic goals of ASP.NET Ajax are:

Reduced web server hits
Reduced Network load
Interactive user interface
Platform and architecture neutrality
Support for both synchronous and asynchronous communication
Provide a server- and client-side framework.

What is NaN? What is its type? How can you reliably test if a value is equal to NaN?

The NaN property represents a value that is “not a number”. This special value results from an operation that could not be performed either because one of the operands was non-numeric (e.g., "abc" / 4), or because the result of the operation is non-numeric.

While this seems straightforward enough, there are a couple of somewhat surprising characteristics of NaN that can result in hair-pulling bugs if one is not aware of them.

For one thing, although NaN means “not a number”, its type is, believe it or not, Number:

console.log(typeof NaN === "number");  // logs "true"
Additionally, NaN compared to anything – even itself! – is false:

console.log(NaN === NaN);  // logs "false"
A semi-reliable way to test whether a number is equal to NaN is with the built-in function isNaN(), but even using isNaN() is an imperfect solution.

A better solution would either be to use value !== value, which would only produce true if the value is equal to NaN. Also, ES6 offers a new Number.isNaN() function, which is a different and more reliable than the old global isNaN() function.

What will the code below output? Explain your answer.

console.log(0.1 + 0.2);
console.log(0.1 + 0.2 == 0.3);

An educated answer to this question would simply be: “You can’t be sure. it might print out 0.3 and true, or it might not. Numbers in JavaScript are all treated with floating point precision, and as such, may not always yield the expected results.”

The example provided above is classic case that demonstrates this issue. Surprisingly, it will print out:

0.30000000000000004
false
A typical solution is to compare the absolute difference between two numbers with the special constant Number.EPSILON:

function areTheNumbersAlmostEqual(num1, num2) {
return Math.abs( num1 - num2 ) < Number.EPSILON;
}
console.log(areTheNumbersAlmostEqual(0.1 + 0.2, 0.3));

Discuss possible ways to write a function isInteger(x) that determines if x is an integer.

This may sound trivial and, in fact, it is trivial with ECMAscript 6 which introduces a new Number.isInteger() function for precisely this purpose. However, prior to ECMAScript 6, this is a bit more complicated, since no equivalent of the Number.isInteger() method is provided.

The issue is that, in the ECMAScript specification, integers only exist conceptually; i.e., numeric values are always stored as floating point values.

With that in mind, the simplest and cleanest pre-ECMAScript-6 solution (which is also sufficiently robust to return false even if a non-numeric value such as a string or null is passed to the function) would be the following use of the bitwise XOR operator:

function isInteger(x) { return (x ^ 0) === x; }
The following solution would also work, although not as elegant as the one above:

function isInteger(x) { return Math.round(x) === x; }
Note that Math.ceil() or Math.floor() could be used equally well (instead of Math.round()) in the above implementation.

Or alternatively:

function isInteger(x) { return (typeof x === 'number') && (x % 1 === 0); }
One fairly common incorrect solution is the following:

function isInteger(x) { return parseInt(x, 10) === x; }
While this parseInt-based approach will work well for many values of x, once x becomes quite large, it will fail to work properly. The problem is that parseInt() coerces its first parameter to a string before parsing digits. Therefore, once the number becomes sufficiently large, its string representation will be presented in exponential form (e.g., 1e+21). Accordingly, parseInt() will then try to parse 1e+21, but will stop parsing when it reaches the e character and will therefore return a value of 1. Observe:

> String(1000000000000000000000)
'1e+21'
> parseInt(1000000000000000000000, 10)
1
> parseInt(1000000000000000000000, 10) === 1000000000000000000000
false

In what order will the numbers 1-4 be logged to the console when the code below is executed? Why?

(function() {
    console.log(1);
    setTimeout(function(){console.log(2)}, 1000);
    setTimeout(function(){console.log(3)}, 0);
    console.log(4);
})();

The values will be logged in the following order:

1
4
3
2
Let’s first explain the parts of this that are presumably more obvious:

1 and 4 are displayed first since they are logged by simple calls to console.log() without any delay

2 is displayed after 3 because 2 is being logged after a delay of 1000 msecs (i.e., 1 second) whereas 3 is being logged after a delay of 0 msecs.

OK, fine. But if 3 is being logged after a delay of 0 msecs, doesn’t that mean that it is being logged right away? And, if so, shouldn’t it be logged before 4, since 4 is being logged by a later line of code?

The answer has to do with properly understanding JavaScript events and timing.

The browser has an event loop which checks the event queue and processes pending events. For example, if an event happens in the background (e.g., a script onload event) while the browser is busy (e.g., processing an onclick), the event gets appended to the queue. When the onclick handler is complete, the queue is checked and the event is then handled (e.g., the onload script is executed).

Similarly, setTimeout() also puts execution of its referenced function into the event queue if the browser is busy.

When a value of zero is passed as the second argument to setTimeout(), it attempts to execute the specified function “as soon as possible”. Specifically, execution of the function is placed on the event queue to occur on the next timer tick. Note, though, that this is not immediate; the function is not executed until the next tick. That’s why in the above example, the call to console.log(4) occurs before the call to console.log(3) (since the call to console.log(3) is invoked via setTimeout, so it is slightly delayed).

Write a simple function (less than 160 characters) that returns a boolean indicating whether or not a string is a palindrome.

The following one line function will return true if str is a palindrome; otherwise, it returns false.

function isPalindrome(str) {
  str = str.replace(/\W/g, '').toLowerCase();
  return (str == str.split('').reverse().join(''));
}
For example:

console.log(isPalindrome("level"));                   // logs 'true'
console.log(isPalindrome("levels"));                  // logs 'false'
console.log(isPalindrome("A car, a man, a maraca"));  // logs 'true'

Write a sum method which will work properly when invoked using either syntax below.

console.log(sum(2,3));   // Outputs 5
console.log(sum(2)(3));  // Outputs 5

There are (at least) two ways to do this:

METHOD 1

function sum(x) {
  if (arguments.length == 2) {
    return arguments[0] + arguments[1];
  } else {
    return function(y) { return x + y; };
  }
}
In JavaScript, functions provide access to an arguments object which provides access to the actual arguments passed to a function. This enables us to use the length property to determine at runtime the number of arguments passed to the function.

If two arguments are passed, we simply add them together and return.

Otherwise, we assume it was called in the form sum(2)(3), so we return an anonymous function that adds together the argument passed to sum() (in this case 2) and the argument passed to the anonymous function (in this case 3).

METHOD 2

function sum(x, y) {
  if (y !== undefined) {
    return x + y;
  } else {
    return function(y) { return x + y; };
  }
}
When a function is invoked, JavaScript does not require the number of arguments to match the number of arguments in the function definition. If the number of arguments passed exceeds the number of arguments in the function definition, the excess arguments will simply be ignored. On the other hand, if the number of arguments passed is less than the number of arguments in the function definition, the missing arguments will have a value of undefined when referenced within the function. So, in the above example, by simply checking if the 2nd argument is undefined, we can determine which way the function was invoked and proceed accordingly.

Can we call C# code behind using jQuery?

Yes, we can call C# code from jQuery as it supports .net application.

What is the use jQuery.data method?

jQuery.data methods is used to associate the data with the DOM nodes and the objects. This data method makes the jQuery code clear and concise.

What is the use of each function in jQuery?

Each function is used to iterate each and every element of an object. It is used to loop DOM elements, arrays and the object properties.

What is the difference between size and length of jQuery?

Size and length both returns the number of element in an object. But length is faster than the size because length is a property and size is a method.

Post a Comment

Previous Post Next Post